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A BRIEF SURVEY OF ASYMMETRIC MDS AND SOME OPEN
PROBLEMS

Naohito Chino∗

A brief review is made of a body of extant asymmetric MDS models and meth-
ods, given a one-mode, two-way asymmetric square relational data matrix whose ele-
ments are similarity or dissimilarity measures between objects, or a special two-mode,
three-way asymmetric relational data matrix which is composed of one-mode, two-way
asymmetric square relational data matrices, and several open problems are discussed.

1. Introduction

Asymmetric relationships among objects are frequently observed in daily life as
well as in designed experiments. They are diverse in character. One-sided love and
hate among members of any informal groups are typical examples. Table 1 shows a
sociomatrix among 10 male students in a senior-high school (Chino, 1978). A group
of hens and cocks shows a special asymmetric relationship called pecking order among
the group (e.g., Rushen, 1982). In recognition experiments the proportion of times
response Rj was made when stimulus Si was presented is not necessarily equal to
the proportion of response Ri when stimulus Sj was presented (e.g., Nakatani, 1972).
Number of references from one journal to another also gives rise to an asymmetric
data matrix (e.g., Coombs, 1964). Amount of trade each nation in the world has
with other nations sometimes shows huge imbalance. Table 2 is a set of trade data
among 10 countries (including two regions) (Chino, 1978), which was obtained from
Statistical Yearbook (1974) by United Nations. Amount of migration from one region
to another is a typical example in geography (Tobler, 1976–1977). The number of
browsing times as well as the spread of computer viruses (e.g., Balthrop et al., 2004)
from one site to another on the Internet also yields asymmetric relations. The asym-
metric coupling matrix defined in a dynamical network consisting of identical nodes
is a typical example in neural networks (e.g., Amari, 1971; Fukai & Shiino, 1990;
Kanter, 1988; Kree & Zippelius, 1995; Lie, 2008; Parisi, 1986).

In general, these asymmetric relationships observed at a specific point in time or
during a certain period of time are summarized in a square matrix whose elements are
similarity or dissimilarity measures between objects. Such a matrix is characterized
as a one-mode, two-way square asymmetric matrix. In contrast, if such a matrix is
obtained at several points in time or during several periods of time, the data matrix
is represented by a special two-mode, three-way matrix which is composed of a set of
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Table 1: Sociometric data of 10 students in a senior-high school.

Rater\Ratee 1 2 3 4 5 6 7 8 9 10

1 4 3 4 3 5 5 6 4 7 7
2 2 3 4 6 7 6 5 5 4 5
3 4 4 3 5 5 4 4 3 4 5
4 4 7 6 3 7 7 4 6 4 5
5 1 7 6 7 4 7 6 6 6 5
6 4 5 4 6 5 7 4 4 4 4
7 4 5 4 4 3 3 6 6 4 6
8 2 4 4 4 5 4 5 2 4 4
9 6 5 5 5 5 6 5 5 4 6
10 4 4 4 3 4 4 4 4 4 4

(Adapted from Table 1 of Chino (1978).)

Table 2: Trade data between 10 countries including two regions. The abbreviated country names,
EC, EA, US, JN, AN, AA, ME, OA, UR, and EP, respectively denote EEC, EFTA, USA,
Japan, Australia, New Zealand, Africa, Middle East, Other Asia, USSR, and Centrally
planned economics.

from\to EC EA US JN AN AA ME OA UR EP

EC 25.67 15.67 2.84 2.42 9.62 5.59 5.07 2.66 6.49
EA 17.99 2.43 0.70 0.35 1.33 0.76 0.82 0.78 1.51
US 16.38 2.23 8.18 1.68 1.51 2.21 6.85 1.19 0.60
JN 4.40 1.32 9.55 1.46 2.48 1.61 8.93 0.49 0.32
AN 1.70 0.12 1.14 3.08 0.08 0.16 1.01 0.24 0.13
AA 11.60 0.88 1.92 0.98 0.04 0.20 0.35 0.63 0.67
ME 10.57 1.21 1.27 5.06 0.33 0.57 2.22 0.35 0.23
OA 5.33 0.46 6.94 6.96 0.79 0.63 0.59 0.62 0.36
UR 2.88 1.04 0.19 0.84 0.01 0.66 0.67 0.45 10.03
EP 5.38 1.49 0.33 0.14 0.55 0.63 0.64 0.30 10.56

(Adapted from Table 3.2 of Chino (1997).)

one-mode, two-way square asymmetric matrices. Sometimes such a matrix is observed
per individual, and yields the same two-mode, three-way matrix.

Asymmetric MDS (hereafter abbreviated as AMDS) extends symmetric MDS (here-
after abbreviated simply as MDS) to handle such asymmetric relationships among
objects. As for symmetric MDS, Cox and Cox (2001) give two definitions, i.e., a nar-
row definition and a wider definition. According to their narrow definition, MDS is
a search for a low dimensional space, usually Euclidean, in which points in the space
represent objects, one for each object, and such that the distances between the points
in the space match as well as possible the original dissimilarities. In order to clarify
the definition of MDS and also the difference between MDS and AMDS, we shall
redefine their narrow definition of MDS, adding a bit stricter constraints, as follows:

The following five conditions are assumed in our narrow definition of MDS. That
is,

1. Data matrix is a one-mode, two-way square symmetric matrix whose elements
are similarity or dissimilarity measures or a special two-mode, three-way matrix
which is composed of a set of one-mode, two-way square symmetric matricies.
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2. Dissimilarities must be measured at the ordinal level or higher, or measured as
the count data.

3. MDS searches for a low dimensional real metric space, Minkowski’s r-metric (a
special case is Euclidean) in which points representing objects are embedded.

4. Points in the space represent the objects, each representing one object.
5. The distances between the points in the space match as well as possible the

original dissimilarities.

Although Cox and Cox refer to neither the data type nor the scale level for MDS,
we have added them as conditions 1 and 2. Especially, the reader should pay special
attention to the term “count data” in condition 2. Although counting is sometimes
viewed as an ordinal scale or higher, we shall clearly distinguish between counting and
ordinal scale or higher. In this paper, following Suppes and Zinnes (1963, p.9), we
shall use counting as an example of an absolute scale, in which there is no arbitrary
choice of unit or zero available. In contrast, in the case of, say, a ratio scale, the choice
of a unit is an arbitrary decision made by an individual or group of individuals.

Furthermore, if we consider an inferential procedure, the most rational analysis of
count data is to treat them, not as, say, measured at an ordinal scale level, but as
measured at a ratio scale level and take their natural logarithm further. The reason
for this is that (1) multinomial distribution as well as Poisson distribution as stan-
dard models for count data belongs to a usual exponential family, and can be written
in canonical form, (2) canonical parameters of these two distributions are not their
population parameters themselves but the natural logarithms of their function or the
natural logarithm of the population parameter, and (3) statistics corresponding to
these canonical parameters have sufficient information of data (e.g., Andersen, 1980).

According to their wider definition, MDS can subsume several techniques of mul-
tivariate data analysis. It covers any technique which produces a graphical represen-
tation of objects from multivariate data. It is apparent that such techniques do not
necessarily satisfy all of the above conditions. Therefore, we shall adopt the narrow
definition of MDS in this papar.

Two basic theorems underpinned MDS in the 1930’s. These are the Eckart and
Young (1936) theorem and the Young and Householder (1938) theorem. The former
is concerned with the lower rank fit to the data matrix S, and the latter with the
necessary and sufficient condition that the coordinates of objects in a multidimen-
sional space are real points in the Euclidean space. Drawing upon these theorems,
Richardson (1938) proposed a method of MDS and Torgerson (1954, 1958) developed
it further (e.g., Tucker & Messick, 1963). Their method is now called classical MDS.
There exists a large body of literature which extends classical MDS. We can divide
it first into two, i.e., descriptive MDS and inferential MDS. We may further divide
the latter into three. These are the so-called special probabilistic MDS, maximum
likelihood MDS, and Bayesian MDS.

The descriptive MDS is a class of MDS which does not accompany any statistical
inferences on population parameters. We shall only refer to representative ones below.
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The classical MDS was first extended to the case when the dissimilarities are mea-
sured at an ordinal scale level by Kruskal (1964a, b), which is called nonmetric MDS.
Guttman and his colleagues (e.g., Guttman, 1968; Lingoes, 1973) followed Kruskal,
and proposed another method of nonmetric MDS called the smallest space analysis
(abbreviated as SSA). Carroll and Chang (1970) also extended classical MDS in such
a way to handle individual differences in dissimilarity judgments, and therefore their
method is called individual differences MDS. Takane, Young, and De Leeuw (1977)
proposed another method of individual differences MDS. In contrast with Carroll and
Chang’ method, their method is applicable to dissimilarity data measured on a wider
class of scale levels.

As the special probabilistic MDS, we include a class of MDS methods which as-
sumes a normal distribution on coordinates of objects to be estimated, and as a result
assumes a noncentral χ2 distribution with some degrees of freedom and a specified
noncentrality parameter on squared distances. Such an MDS technique goes back to
Hefner (1958), and several papers exist in the literature (e.g., Ramsay, 1969; Suppes
& Zinnes, 1963; Zinnes & Mackay, 1983).

The maximum likelihood MDS is another class of inferential MDS techniques, which
assumes a normal distribution and/or log-normal distribution on observed dissimilar-
ities (e.g., Ramsay, 1977, 1978, 1982; Takane, 1978a,b, 1981; Takane & Carroll, 1981).
In this class of MDS methods, it is assumed that dissimilarities are obtained by the
pair comparison method or by a certain rating method.

The Bayesian MDS is another inferential MDS, which is based on the Bayesian
inference, and has recently been proposed by several researchers (e.g., Fong et al.,
2010; Je et al., 2008; Lee (2008); Oh & Raftery, 2001, 2007; Okada & Mayekawa,
2011; Okada & Shigemasu, 2010; Park et al., 2008).

As is apparent from the brief review of MDS made above, symmetric MDS has a
long history and has been almost fully developed in that both descriptive and inferen-
tial methods are now available. Furthermore, major books on MDS which thoroughly
review MDS have been published (e.g., Borg & Groenen, 2005; Cox & Cox, 2001;
Saito, 1980; Takane, 1980). In contrast, such books on AMDS are rare (e.g., Chino,
1997), although the books on MDS mentioned above partly introduce AMDS (e.g.,
Borg & Groenen, 2005; Cox & Cox, 2001). Recently, Saito and Yadohisa (2005) review
AMDS fairly extensively. One possible reason for the relative paucity of literature on
AMDS may be that it is still an active area of research. As a result, the notion of
AMDS is still vague, and it seems that the precise definition of AMDS has not been
established. Therefore, it seems appropriate and necessary to give some definition of
AMDS, before we make a critical review of AMDS in this paper. In fact, depending
on this definition, the history of AMDS will have to focus on different aspects. It
might be possible to make a narrow definition of AMDS as well as a wider definition
in a manner similar to Cox & Cox (2001) for MDS. In this paper, we shall further
divide the narrow definition of AMDS into three, i.e., a narrow definition, a narrower
definition, and finally the narrowest definition.

The following six conditions are assumed for the narrowest definition of AMDS:
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1. Data matrix is a one-mode, two-way square asymmetric matrix whose elements
are similarity or dissimilarity measures or a special two-mode, three-way matrix
which is composed of one-mode, two-way square asymmetric matricies.

2. Dissimilarities are measured at the ordinal level or higher.
3. It involves a search for a low dimensional real metric space, complex metric space,

or real asymmetric metric space.
4. Points in the space represent the objects, each representing one object. This

condition is the same as in MDS.
5. Some additional parameters other than distance are assumed in the case of the

real metric space.
6. The distances between the points in the space match as well as possible the

original dissimilarities. This condition is the same as condition 5 in MDS.

Condition 2 excludes a body of asymmetric methods for count data (i.e., Chino, 1997).
As the metric spaces in condition 3, we include the Minkowski r-metric space (the
Euclidean space as a special case) for the real metric space, the Hilbert space for
the complex metric space (i.e., Chino & Shiraiwa, 1993; Saito & Yadohisa, 2005),
and the asymmetric Minkowski space for a real asymmetric metric space (i.e., Sato,
1988). This condition excludes a familiar method for the skew-symmetric data, i.e.,
the Gower diagram (or sometimes called the canonical analysis of skew-symmetry
(abbreviated as CASK by Chino, 1997), because the area property in CASK has the
symplectic but not Euclidean structure (Chino & Shiraiwa, 1993).

As will be discussed in detail later, CASK decomposes the skew-symmetric part
of a squared asymmetric matrix into the weighted sum of a special quantity (see,
Eq. (20) in Section 2). It is well known that this quantity is an oriented area of the
parallelogram spanned by the two location vectors corresponding to two objects.

It is apparent from the above definition of AMDS that we have inherited the con-
cept of metric space from the narrow definition of MDS discussed previously. As is
well known, a metric space is a nonempty set M equipped with a positive real-valued
function d : M ×M → R, called the distance function, that satisfies the following
axioms:

1. d(X,Y ) ≥ 0, and d(X,Y ) = 0 ⇔ X = Y (positive-definite),
2. d(X,Y ) = d(Y,X) (symmetric),
3. d(X,Y ) + d(Y,Z) ≥ d(X,Z) (triangle inequality),

for all X,Y,Z ∈M .
Minkowski’s r-metric as well as Hilbert space satisfies all of these axioms, while a

more general Minkowski space, which we call here the asymmetric Minkowski space,
does not satisfy the second axiom. As defined elsewhere (e.g., Matsumoto, 1986; Sato,
1988), a Minkowski space M is a finite dimensional real vector space such that the
length of a vector x ∈ M is given by the value L(x) of a function L on M , where L
is assumed to satisfy the following conditions,

1. L(x) ≥ 0, for any x ∈M , L(x) = 0 if and only if x = 0 , (nonnegativity),
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2. L(αx) = αL(x), for any α > 0, x ∈M , (positively homogeneous of degree one),
3. L(x + y) ≤ L(x) + L(y) , for any x,y ∈M , (convexity),
4. L(x) is differentiable at any non-zero x.

The function L is called Minkowski metric function. If L(x) = L(−x) for any x, then
the metric is considered to be symmetric.

The narrower definition of AMDS, on the other hand, adds the count data in con-
dition 2. This gives a criterion for checking and classifying the seemingly different
approaches to an asymmetric dissimilarity data matrix using the notion of quasisym-
metry in the log-linear model, as discussed in a later section.

The narrow definition of AMDS adds the indefinite metric space in condition 3.
The narrow definition also adds a one-mode, three-way square matrix in condition 1.
We shall discuss open problems on these topics in the discussion section.

According to the wider definition of AMDS, it can subsume several techniques of
multivariate data analysis, and covers any techniques which produce a graphical rep-
resentation of objects from multivariate data, as in MDS. It is apparent that such
techniques do not necessarily satisfy all of the above conditions for AMDS. Therefore,
we shall adopt the narrow definition of AMDS in this paper.

The organization of this paper is as follows. In the next section we shall briefly
review a body of AMDS methods in the narrowest sense. Then, we shall briefly re-
view a body of AMDS methods in the narrower sense, which assumes count data, and
embeds objects in some metric space, and discuss the implications of checking and
classifying various features of these two bodies of AMDS in the third section. In the
discussion section, we shall list up the open problems on AMDS in the near future.

2. A Brief Review of AMDS in the Narrowest Sense

In the narrowest sense, AMDS may go back to the work of Young (1975). In his
ASYMSCAL model, the squared distance from object i to object j is defined by the
equation

d2
ij =

r∑
a=1

wia(xia − xja)
2, wia ≥ 0, (1)

where wia is the weight of object i on dimension a, xia is the coordinate of object i on
dimension a, and where there are n objects and r dimensions. The distance used in
this model is clearly an extension of the familiar Euclidean distance. As a result we
need not only the coordinates of objects but also the object weights (which he calls
the stimulus weights) in order to explain the asymmetric dissimilarity data.

A number of models have been proposed since Young proposed his ASYMSCAL.
As in MDS, we can divide them into two, i.e., the descriptive AMDS and the infer-
ential AMDS. According to the narrowest definition, almost all the extant AMDS
models remain descriptive. Representative methods in this category are Borg and
Groenen (2005), Chino (1978, 1990), Chino and Shiraiwa (1993), Constantine and
Gower (1978), Escoufier and Grorud (1980), Gower (1977), Harshman (1978), Harsh-
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man et al. (1982), Kiers and Takane (1994), Krumhansl (1978), Loisel and Takane
(2011), Okada and Imaizumi (1984, 1987, 1997), Rocci and Bove (2002), Saito (1991),
Saito and Takeda (1990), Sato(1988), ten Berge (1997), Tobler (1976–77), Trendafilov
(2002), Weeks and Bentler (1982), Yadohisa and Niki (1999), Young (1975), and Ziel-
man and Heiser (1996).

Chino and Okada (1996) and Chino (1997) further divide the above methods (ex-
cept for the models proposed after 1996) into three groups, i.e., the augmented distance
model, the non-distance model, and the extended distance model. The augmented dis-
tance model is a family of AMDS in which some parameters are added to the metric
distance between objects in order to handle asymmetry, and includes Borg and Groe-
nen (2005), some of Gower’s (1977) models, Krumhansl (1978), Okada and Imaizumi
(1984, 1987, 1997), Saito (1991), Saito and Takeda (1990), Tobler (1976–1977), Weeks
and Bentler (1982), Yadohisa and Niki (1999), Young (1975), and Zielman and Heiser
(1993). Young’s ASYMSCAL can be classified into this family of models.

Tobler (1976–1977) proposed a unique geographical AMDS model. His wind model
assumes a kind of wind for the observed asymmetry, and estimates it using a vector
field model. In order to estimate the vector field from the original similarity measures,
the following model is assumed

tij =
dij

r + cij
, cij = r

tji − tij
tij + tji

, (2)

where tij is a travel effort (time, cost, etc.), and it is assumed that tij is aided by a
flow cij (Tobler denotes it as �cij) in the direction of movement from place i to place
j. Moreover, r is a rate of travel, independent of position and of direction, and is in
the same units as cij . Once the vector field is estimated, it is decomposed into diver-
gence and curl-free parts, and the scalar and vector potentials are calculated. Finally,
the gradient vectors of the scalar potentials are drawn on the estimated configura-
tion, which explain the travel flows. If the distances between two places are known,
Tobler’s method cannot be classified into AMDS in the narrowest sense, but if it is
estimated from the symmetric part of tij using some appropriate MDS, his method
can be viewed as an AMDS.

Yadohisa and Niki (1999) proposed a vector field model similar to the Toblers’
model. They assume that the locations of objects have already been determined from
the symmetric part of the data via some suitable MDS method. Given the config-
uration of objects, they estimate vectors at those locations as well as the estimated
scalar potentials from the skew-symmetric part of the data.

Two of the models which Gower (1977) proposed, i.e., the jet-stream model and the
cyclone model, are very similar to Tobler’s wind model. The jet-stream model was
conceived by imaging a plane flying at a constant velocity V between two towns Pi
and Pj which are dij distance apart. If there is a jet-stream, velocity v, making an
angle θij with line Pi Pj then the flight times tij and tji are

tij =
dij

V + v cos θij
, tji =

dij
V − v cos θij

. (3)
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As a result, if the ratio v/V is sufficiently small to ignore v2/V 2, the symmetric part
and the skew-symmetric part of tij can be written as

tij(s) � dij
V
, tji(sk) � v dij cosθij/V

2, (4)

respectively. In any case, this model is formally the same as that of Tobler, if we
reparameterize cij = v cos θij and cji = −v cos θij . Although Gower was interested in
analyzing symmetric parts and skew-symmetric parts separately, the jet-stream model
may be thought of as an AMDS model if we analyze them simultaneously. Borg and
Groenen (2005) proposed a similar model to the jet-stream model in that both sym-
metric parts and skew-symmetric parts are analyzed simultaneously. It is called the
hill-climbing model, and is written as

d∗ij = dij +
(xi − xj)

t z

dij
. (5)

The cyclone model also proposed by Gower (1977) is similar to the jet-stream
model. This model is written as

tij =
dij

V + ω hij
, tji =

dij
V − ω hij

. (6)

As Gower points out, this model is similar to the jet-stream model except that the
jet-stream is replaced by a cyclonic wind rotating about its center C at a constant
angular velocity. Moreover, it is the same as Tobler’s wind model, if we reparametrize
cij = ω hij and cji = −ω hij . As with the jet-stream model, the cyclone model may
also be thought of as an AMDS model if we analyze them simultaneously. Later, we
shall discuss an AMDS method proposed by Sato (1988, 1989) which generalizes the
jet stream model from a mathematically more sophisticated view point.

Krumhansl’s distance-density model augments the distance dij as follows:

d∗ij = dij + αδ(xi) + βδ(xj), (7)

where d∗ij is an augmented distance, and δ(xi) and δ(xj) are measures of spatial
density in the neighborhoods of objects i and j, respectively, while α and β are the
corresponding weights applied to the densities.

By contrast, Weeks and Bentler (1982) proposed an augmented distance model
(the W-B model) which simplifies the distance-density model. According to the W-B
model,

d∗ij = b dij + ci − cj + a, (8)

where a is an additive constant, and b = −1 if the data is composed of similarity mea-
sures instead of dissimilarity measures. The Euclidean distance, dij , may be replaced
by d2

ij in Eq. (8).
Okada and Imaizumi (1984) proposed a more general model than the distance-

density model as well as the W-B model. This model is written as
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d∗ij = dij + α c(i, j, t) + βc(j, i, t), (9)

where α and β are constant weight parameters, and c(i, j, t) and c(j, i, t) are the terms
which represent the skew-symmetric component and are assumed to be positive. They
consider several sub-models, one of which is the O-I model (Okada & Imaizumi, 1987)

d∗ij = dij − ri + rj. (10)

Okada and Imaizumi (1997) extended it to the two-mode, three-way case.
Saito and Takeda (1990) proposed models similar in form to the O-I model. Model

2, which is the most general one, is written as,

d∗ij = dij + a θi + b θj + r, (11)

where dij is the Minkowski’s r-metric, and r is an additive constant. This model is
apparently a special case of Eq. (9) but it may be more appropriately regarded as
an extension of Eqs. (7), (8), and (10). For example, although δ(xi) and δ(xj) in
Eq. (7) as well as ri and rj in Eq. (10) are all positive by definition, there exist no
such restrictions on a, b, θi, and θj in Eq. (11). It is evident that the second and third
right-hand terms in (11) are extentions of those in (8), although the first right-hand
term of (11) is a special case of that in (8). If θi’s are positive, they are interpreted as
stimulus specific effects, analogous to spatial densities in the distance-density model.

Later, Saito (1991) proposed the following model,

d∗ij = dij + θi + φj + γ, (12)

which is partly a generalization of Eq. (8), because parameters in the second and third
right-hand terms are distinct in Eq. (12) but they belong to the same set of parame-
ters in Eq.(8). However, as for the first right-hand term, this model assumes a special
case of that of the W-B model.

Most of the above models are considered as a special case of the Holman model
(Holman, 1979) stated as

sij = F [mij + ri + cj ] , (13)

where sij is a similarity between objects i and j which Holman calls the proximity
data and F is some strictly increasing function, and mij is a symmetric function.
If mij is parametrized further by the coordinates of objects in a metric space, this
model can be said to be an AMDS model in the narrowest sense. In any case, the only
exception for the Holman model is a generalized version of the O-I model described
by Eq. (10). Nosofsky (1991) calls the Holman model the additive similarity and bias
model.

Zielman and Heiser (1993) proposed an algorithm to fit the slide-vector model,
which had been suggested by Kruskal in 1973. This model is written as:

dij =

{
r∑

t=1

(xit − xjt + zt)
2

}1/2

, (14)
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where xit and xjt, respectively, are the coordinates of objects i and j on dimension
t, and (z1, z2, · · · , zr) constitutes the slide-vector z. This model has a distinguishing
feature that the diagonal elements of the model are non-zero, unlike a regular dis-
tance model. They showed how the coordinates and the slide-vector can be obtained
by using an unfolding algorithm by Heiser (1987). This means that the slide-vector
is a special version of the unfolding model originated by Coombs (1964). They also
proposed a three-way generalization of the slide-vector model,

dijk =

{
r∑

t=1

ukt(xit − xjt + zt)
2

}1/2

. (15)

However, we consider the unfolding model, especially the multidimensional unfolding
models (e.g., Bennet & Hays, 1960; Hays & Bennett, 1961; Schönemann, 1970) as
they are neither a family of the augmented distance models nor a family of AMDS’s
in the narrowest sense, because in general the multidimensional unfolding models do
not necessarily satisfy the conditions 1, 4, and 6 in our definition of AMDS in the
narrowest sense. Incidentally, Zielman and Heiser (1993) also proposed the multiple
slide-vector model as well as the row-weighted slide-vector model as candidates for
other possible generalizations.

The non-distance model is based on some quantity other than the metric distance,
e.g., the inner product to the similarity measures (e.g., Chino, 1977, 1978, 1990; Con-
stantine & Gower, 1978; DeSarbo et al., 1992; Escoufier & Grorud, 1980; Gower, 1977;
Harshman, 1978; Harshman et al., 1982; Kiers & Takane, 1994; Loisel & Takane, 2011;
Trendafilov, 2002).

Chino (1977, 1978) proposed an ASYMSCAL model different from Young (1975).
In contrast with Young’s augmented distance model, he proposed a special inner
product model for AMDS, which is written as follows,

sij = a (xi1xj1 + xi2xj2) + b (xi1xj2 − xi2xj1) + c, (16)

where sij is a similarity between objects i and j, and c is an additive constant, while
xil is the coordinate of object i on dimension l. It is apparent that the quantity in
the first parentheses on the right-hand side of Eq. (16) and that in the second paren-
theses are, respectively, the inner product and the cross-product (outer product) of
position vectors corresponding to two objects i and j on a two-dimensional plane.
The cross-product is equivalent to the area of the parallelogram formed by the two
position vectors.

Figure 1 shows the two-dimensional configuration of 10 nations including two re-
gions for the trade data in Table 2. The positive direction in this figure is crucial in
interpreting the direction of skewness in the amounts of trade between two nations.
The sign of b in Eq. (16) determines this direction. It is apparent from the positive
direction as well as the magnitudes of the parallelogram spanned by two position vec-
tors corresponding to two nations that Japan is in a state called “unilateral love”. In
other words, Japan’s trade surplus of exports over imports was prominent among the
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Figure 1: Configuration of 10 nations including two regions obtained via Chino’s ASYMSCAL
(Adapted from Figure 3.7 of Chino (1997)). In this figure, the positive direction is
counterclockwise.

10 nations.
Although Chino’s ASYMSCAL was confined within the three-dimensional space,

he later extended it to a generalized inner product model called GIPSCAL (Chino,
1990). GIPSCAL is written in matrix form as,

S = aXXt + bXLqX
t + c1N 1tN , (17)

where S = {sij}, a and b are constants, and c is an additive constant, while X is
an N × q coordinate matrix, and Lq is a special skew-symmetric matrix (also, Chino,
1980; Gower, 1984).

Later, Kiers and Takane (1994) pointed out that the alternating least squares (ALS)
algorithm for fitting the GIPSCAL off-diagonal elements did not constitute a true
ALS, and hence need not decrease the objective function value monotonically. Fur-
thermore, they simplified the Lq in Eq. (17) in order to facilitate the interpretation of
the skew-symmetric part of the data as follows,

S = a X̃X̃
t
+ b X̃ΔX̃

t
+ c1N 1tN , (18)

where Δ is a fixed matrix with singular values of the matrix Lq in skew-symmetric
2 × 2 blocks along the diagonal. To be precise, Lq = UΔU ′ and XU = X̃. Rocci
and Bove (2002) proposed a special case of (18).

Trendafilov (2002) proposed another unique method for solving GIPSCAL effi-
ciently. In his approach, the GIPSCAL problem is reformulated into an initial value
problem for matrix ordinary differential equations on manifolds defined by the con-
straints of the original least-squares problems. This algorithm has been found to
produce solutions which give better fits to the data than the algorithms of Chino
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(1978) as well as Kiers and Takane (1994). Trendafilov also proposed a three-way
GIPSCAL and its algorithm.

Recently, Loisel and Takane (2011) proposed a fast convergent algotithm for GIP-
SCAL with acceleration by the minimal polynomial extrapolation. They adapted their
basic algorithm to various extensions of GIPSCAL, including off-diagonal DEDE-
COM/GIPSCAL, and three-way GIPSCAL.

Gower (1977) proposed several methods for the analysis of asymmetry, one of which
includes in part the same quantity as Chino’s ASYMSCAL in the two-dimensional
case. The Gower diagram or CASK, referred to in the introduction section, de-
composes the skew-symmetric part of the square asymmetric data matrix S via the
singular value decomposition,

Ssk = XΛKXt, (19)

where Ssk denotes the skew-symmetric part of S, while X is an N × N orthog-
onal matrix, Λ is a special diagonal matrix of singular values such that Λ =
diag(λ1, λ1, λ2, λ2, · · · , (0)), and K is a skew identity matrix consisting of(

0 −1
1 0

)

as diagonal blocks. In scalar form, Eq. (19) is written as

sij(sk) =
p∑
t

λt (xi,2t−1xj,2t − xi,2txj,2t−1), (20)

where p is the largest integer not exceeding N/2. Eq.(20) is nothing but the second
term on the right-hand side without constant b in Chino’s ASYMSCAL given in (16).
Chino (1977) and Gower (1977) introduced this quantity independently.

However, Gower took a philosophically different approach from Chino’s. Holman
points out that there exist two approaches to asymmetric proximity data. One consid-
ers the symmetric part and skew-symmetric part of the data to be inseparable parts
of the same fundamental process, and the other considers the two parts to reflect
different processes that can be distinguished by appropriate analysis. Chino (1977)
took the former approach, while Gower (1977) took the latter, although at least some
other methods proposed by Gower, i.e., the jet-stream model and the cyclone model
include the distance between two geographical points, as discussed earlier. In any
case, we shall not regard at least CASK as an AMDS model because it possesses a
symplectic structure which is different from that of the Euclidean metric structure
(e.g., Arnold, 1978; Chino & Shiraiwa, 1993).

Harshman and his colleagues (Harshman, 1978; Harshman et al., 1982) proposed
a simple non-distance model called DEDICOM, which stands for the DEcomposition
into DIrectional COMponents,

S = Y AY t, (21)
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where Y is the N × p loading matrix of N objects on a few basic types of objects,
while A is a small asymmetric matrix of order p giving the directional relationships
among the basic p types or dimensions. He called DEDICOM a non-spatial approach,
and thus did not discuss its metric structure. However, Chino and Shiraiwa (1993)
have proven that DEDICOM has an explicit metric structure under a mild condi-
tion. Formally, Chino’s ASYMSCAL is a special case of DEDICOM. Harshman et al.
(1982) discuss a two-mode, three-way version of DEDICOM. Takane and Kiers (1997)
proposed the latent class DEDICOM for square contingency tables, which is a hybrid
model of a latent class model and a special constrained DEDICOM.

Escoufier and Grorud (1980) proposed a similar model in form to Chino’s ASYM-
SCAL from a linear algebraic point of view. Although they did not give any formal
name to their model, Chino (1991) called it the Hermitian canonical model abbreviated
as HCM. HCM first decomposes the original similarity matrix S into the symmetric
part Ss and the skew-symmetric part Ssk, and compute an Hermitian matrix H such
that H = Ss + iSsk, where i is a pure imaginary number. Then, they solved the
eigenvalue problem of H using a well-known method which constructs a double sized,
real symmetric matrix T such that

T =

(
Ss, −Ssk

Ssk, Ss

)
. (22)

It is well known that if the eigenvector corresponding to the l-th eigenvalue of H is
denoted as wl = ul + ivl, then the eigenvalues of T come in pairs λ1, λ1, λ2, λ2, · · ·,
and the eigenvectors corresponding to an identical eigenvalue λl are al = (ut

l ,v
t
l)
t and

bl = (−vtl ,u
t
l)
t (e.g., Wilkinson, 1965). Using these results, we have

Ss =
N∑
l=1

λl (ulu
t
l + vlv

t
l), (23)

and

Ssk =
N∑
l=1

λl (vlut
l − ulv

t
l). (24)

In scalar form, these are approximated as follows with only the largest eigenvalue λ1,

sij(s) � λ1(ui1uj1 + vi1vj1), sij(sk) � λ1(vi1uj1 − ui1vj1). (25)

This is the result obtained by Escoufier and Grorud.
DeSarbo et al. (1992) proposed a spatial MDS procedure called TSCALE based

on Tversky’s contrast model. They assume a two-mode, three-way proximity data.
Letting d∗ijr be the dissimilarity value on the r-th replication between the two objects
i and j, for example, one of the TSCALE models is written as

d∗ijr =
T∑
t=1

αr (xit − xjt)+ +
T∑
t=1

βr (xjt − xit)+ +
T∑
t=1

θr min(xit, xjt), (26)
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for Tversky’s original linear contrast analog. Here, the function (u− v)+ = max(u−
v, 0), αr is the impact or salience that is distinctive to the first object, i, in pair ij,
presented on the rth replication (e.g., subject r), βr is the impact or salience that is
distinctive to the second object, j, in pair ij, presented on the rth replication (e.g.,
subject r), and θr is the impact or salience that is common to the object pair ij pre-
sented on the rth replication. They also proposed a ratio, distinctive feature model.
For details, see DeSarbo et al. (1992).

The extended distance model is a family of AMDS in which some distance struc-
ture is assumed other than the traditional real metric structure, i.e., the Minkowski’s
r-metric. One is the the (real) asymmetric Minkowski’s metric structure, and the
other the (complex) Hilbert space structure. Sato (1988, 1989) proposed to embed
objects in a certain real asymmetric Minkowski space, given a set of asymmetric dis-
similarity measures. Here, it should be noticed that the Minkowski space he uses is
not the familiar Minkowski’s r-metric, but has an asymmetric metric function. The
two-dimensional (asymmetric) Minkowski metric model is written as follows,

d∗ij =
dij

rβ (ψ | γ) , (27)

where dij is a usual Euclidean distance, and rβ (ψ | γ) is a transformed indicatrix such
that, using an original indicatrix r(θ | γ),

x1 − β = r(θ | γ) cos(θ), x2 − β = r(θ | γ) sin(θ), (28)

where (x1, x2) is the current coordinate of point in the plane, and the original indica-
trix is written as

r(θ | γ) =
m∑
k=1

γk rk(θ). (29)

Here, the component indicatrix in Eq. (29) is

rk(θ) = μk + νk cos(k(θ − π/4), (30)

where μk = (k2 + 2)/(k2 + 3) and νk = 1/(k2 + 3). As Sato (1988) point out, if we
choose the indicatrix with k = 1, the Minkowski metric defined by Eq. (27) is equiva-
lent to the jet stream model by Gower (1977). Sato (1989) extended his model to the
three-dimensional case in which another asymmetric metric function, Rander’s metric
function (Randers, 1941), was used.

The other is to utilize the (complex) Hilbert space structure. As discussed earlier,
Escoufier and Grorud (1980) did not point out the metric structure in their HCM
model. In contrast, Chino and Shiraiwa (1993) reformulated HCM and discovered
the Hilbert space structure. In contrast with Escoufier and Grorud’s approach, they
directly treated the eigenvalue problem of the Hermitian matrix obtained from the
data matrix S, and deduced the following equation:

H = XΩsX
t + iXΩskX

t, (31)
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where

Ωs =

(
Λ, O

O, Λ

)
, Ωsk =

(
O, −Λ
Λ, O

)
, (32)

and Λ is a diagonal matrix of order n which is the number of non-zero eigenvalues of
H, i.e., Λ = diag(λ1, λ2, · · · , λn). The matrix X is the special real N × 2n coordinate
matrix of objects, i.e., X = (U r,U c), where U1 = U r + iU c and U1 are composed
of the complex eigenvectors of H corresponding to its non-zero eigenvalues. It should
be noticed that all the eigenvalues of H is real.

It is easy to show that Eq. (31) can be rewritten as

S = XΩsX
t + XΩskX

t. (33)

Chino and Shiraiwa (1993) called Eq. (31) the Hermitian form model abbreviated as
HFM. They showed that DEDICOM, GIPSCAL, and HCM are special cases of the
Hermitian form model if their complex counterparts are considered. Furthermore,
Chino and Shiraiwa (1993) proved that a necessary and sufficient condition for these
models to be expressible in terms of (complex) Hilbert space is the positive semi-
definiteness of H. This is an extension of the Young-Householder theorem on MDS
to the case of the complex space.

Saito and Yadohisa (2005) contended that there existed some unclear points of
this extension, and took another look at the extension. That is, they divided the
Chino-Shiraiwa theorem into two, i.e., theorems on sufficiency and necessity, which
they called theorem 4.2 and theorem 4.3, respectively. Moreover, they emphasized the
role of the distance between objects j and k, djk (= ‖wj −wk‖, where wj and wk are
coordinate vectors corresponding to objects j and k in the Hilbert space) in discussing
the extension of the Young-Householder theorem. However, in theorem 4.2 they did
not discuss the other important distance d̄jk (= ‖wj − iwk‖, where i2 = −1) in the
Hilbert space, which is indispensable to the Chino-Shiraiwa theorem. For further
details, see Chino and Shiraiwa (1993) as well as Saito and Yadohisa (2005).

All the AMDS models discussed up to now are descriptive models in which no sta-
tistical inference is involved. Traditionally, the AMDS in the narrowest sense might
have been applied to asymmetric relational data matricies under an implicit assump-
tion that the data are sufficiently asymmetric enough to warrant AMDS. However,
the question arises: Given an S, how should we ascertain whether it is sufficiently
symmetric or not? Kruskal (1964b), for example, discusses nonsymmetry of dissimi-
larities in his seminal paper on nonmetric MDS. He recommends to average the (i, j)
and (j, i) elements of S if they are measurements on the same underlying quantity and
differ only because of random fluctuation. However, he did not provide any method
for checking whether they differ only randomly. In order to answer this question
empirically, it seems appropriate to develop some inferential method for it.

Recently, Saburi and Chino (2008) proposed a maximum likelihood asymmetric
MDS called ASYMMAXSCAL, which is an extension of MAXSCAL proposed by
Takane (1981). MAXSCAL is a maximum likelihood (ML) MDS method specifically
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designed to analyze the symmetric similarity data measured on rating scales with a
relatively small number of observation categories. ASYMMAXSCAL inherited almost
all the characteristics which MAXSCAL possesses. As a result, the scale level assumed
in ASYMMAXSCAL is usually higher than or equal to the ordinal level. However, as
Takane (1981) points out, as a special case, the same-different judgments like the con-
fusion data can also be analyzed as if they were two-category judgments. As a result,
whatever the scale level may be, the original data set for applying ASYMMAXSCAL
is composed of one-dimensional frequency distributions of proximity judgments on the
pairs of objects, which is called the Type A design data. By examining the estimated
values of the category boundaries of the rating scale under study, one can diagnose
the scale level of measurement as either the ordinal level or the interval level.

ASYMMAXSCAL provides two methods for checking whether the data are suffi-
ciently asymmetric or not. One is a special symmetry test prior to fitting any asym-
metric MDS model, and the other is some symmetry tests in a subsequent scaling step.
To do the first, we rearrange the Type A data into a special n × n ×M three-way
contingency table whose stratified variable is composed of the rating categories. It is
called the Type B design data.

In ASYMMAXSCAL, a special conditional symmetry hypothesis, i.e., H(cs)
0 :

pijm = pjim (1 ≤ i < j ≤ N ; 1 ≤ m ≤ M − 1) in Type A design is tested us-
ing the LR test statistic. The other method for checking the asymmetry of data in
ASYMMAXSCAL is composed of two kinds of symmetry tests in the scaling step.
One is the test for the symmetry hypothesis based on the saturated representation
model (the SR model). Although any extant AMDS model may be chosen as the
representation model in ASYMMAXSCAL, the SR model is the representation model
with no structure. The other symmetry test in the scaling step is the test for the
symmetry hypothesis based on a specified representation model under study. For ex-
ample, Saburi and Chino (2008) choose the O-I model as the specified model. As a
result, the hypothesis is represented by H(s/oi)

0 : ri = ri+1 (1 ≤ i ≤ N − 1). In ASYM-
MAXSCAL, several models including the above mentioned symmetry hypotheses can
be compared using AIC, instead of using the statistical tests. Such a strategy has of-
ten been taken in the literature of asymmetric MDS as well as analysis of contingency
tables (Takane, 1981, 1987; Tomizawa, 1992).

Figure 2 shows the three-dimensional configuration and spheres for the O-I model
under the ordinal scale assumption via the application of ASYMMAXSCAL to the
friendship data among nations in East Asia and the USA, which was adapted from
Saburi and Chino (2008). In this survey, four hundred Japanese university students
participated, and the single-judgment sampling was chosen. Each subject rated the
extent to which he or she felt the government of a nation as friendly or hostile to that
of another nation on a 5-point rating scale. Since the sphere associated with Japan
is larger than those of the other nations, it is interpreted from the O-I model that
Japan is perceived as more friendly to other nations than the other way around.
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Figure 2: Configuration of 5 nations and spheres surrounding each of them for the O-I model
obtained via ASYMMAXSCAL (Adapted from Figure 4 of Saburi & Chino (2008)).

3. A Brief Review of AMDS in the Narrower Sense and a Criterion for
Checking Features of AMDS Models

In this section, we shall first review briefly major AMDS methods for count data.
As was done in the review of AMDS in the narrowest sense, we shall divide a body of
AMDS in the narrower sense into the descriptive AMDS and the inferential AMDS.
As was the case for MDS, the latter AMDS grew out of the descriptive methods.

In stimulus recognition experiments in psychology, typical data can be summarized
in a confusion matrix C, each element of which is the proportion of times response
Rj was made when stimulus Si was presented, and it is an estimate of the conditional
confusion probability P (Rj | Si). According to Ashby and Perrin (1988), the biased-
choice model (sometimes called the similarity choice model, e.g., Nosofsky, 1986) has
been most successful in predicting a wide variety of confusion matrices over the last
20 years (e.g., Luce, 1963; Shepard, 1957). This model is written as

P (Rj | Si) =
βjηij∑
m βm ηim

, (34)

where ηij is the similarity of stimulus Si to stimulus Sj , and βj is the bias toward
response Rj . Here, it is assumed that ηij = ηji and all self-similarities are equal.
Eq. (34) is sometimes called the unrestricted similarity-choice model in contrast with
the restricted version discussed below (Takane & Shibayama, 1992).

The biased-choice model itself cannot be viewed as an AMDS model in the nar-
rower sense. However, if we assume that ηij is a function of the distance between the
two stimuli, and the distance is parameterized by coordinates of stimuli, such a model
can be considered as an AMDS model. In fact, Shepard (1957) suggested replacing
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ηij in Eq. (34) by the exponential decay function, exp(−dij), i.e.,

P (Rj | Si) =
βj exp(−dij)∑
m βm exp(−dim)

. (35)

This model is called the MDS-choice model (e.g., Nosofsky, 1985a, b, 1986) or Shepard
(1958a) also considered the Gaussian function, i.e., ηij = exp(−d2

ij), and sometimes
called, recpectively, the exponential MDS-choice model and the Gaussian MDS-choice
model (e.g., Takane & Shibayama).

Although Ashby and Perrin (1988) refer to several models as versions of the MDS-
choice model, some of them cannot be viewed as AMDS models in the narrower sense,
while some other can be. Moreover, some of them are descriptive, but others are in-
ferential. We shall briefly discuss the descriptive AMDS first. Shepard (1957, 1958b)
discussed not only Eq. (35) but also proposed a procedure for obtaining coordinates
of stimuli using a version of classical MDS.

Getty et al. (1979) conducted an experiment to demonstrate that the perceptual
space derived from similarity judgments in a pairwise similarity-judgment task can
then be used to predict behavior in an identification task. Judged (symmetric) sim-
ilarity data among 8 visual stimuli were analyzed by INDSCAL (Carroll & Chang,
1970) first, and the set of spatial coordinates for each of the stimuli were obtained.
Then, the weighted Euclidean distances were computed and a set of confusion weights
between stimuli were obtained using an exponential decay function. Finally, the con-
ditional probabilities of giving the response Rj assigned to stimulus Sj when stimulus
Si was presented using a version of Luce’s choice model, which assumed no differential
response bias. Results indicated that this model predicts well the confusion matrices
of the identification task.

Nosofsky (1984) related Medin and Schaffer’s (1978) context theory to a more gen-
eral theoretical framework for the modeling of choice and similarity. Their context
theory assumes two rules. One is the response-ratio rule which states the probability
of classifying any test stimuli as a member of some category, and the other the mul-
tiplicative rule for computing stimulus similarity. As for the response rule, Nosofsky
considers it as a bias-free extension of Luce’s choice theory. As regards the multi-
plicative rule, he points out that it arises as a special case of psychological distance
between stimuli conforming to the city-block metric, and of stimulus similarity being
an exponential decay function of psychological distance.

Keren and Baggen (1981) proposed and tested a feature analytic model for recog-
nition of alphanumeric characters based on Tversky’s contrast model. They applied
their model, to Gilmore et al.’s (1979) data. However, since distances between stimuli
are not resolved into coordinates of stimuli, which is consistent with the philosophy of
their model, their model cannot be viewed as asymmetric MDS in the narrower sense.

Appelman and Mayzner (1982) applied Krumhansl’s distance-density model to the
confusion matrices in three published studies which conducted a typical letter recog-
nition experiment using a dot matrix for displaying letters. Although they examine,
for example, the functional relationship between mean proportion of confusions per
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letter pair and the distance between letters, they do not utilize any MDS procedure
to estimate coordinates of letters. For this reason, their study cannot be considered
as that of asymmetric MDS in the narrower sense.

In contrast, Nakatani (1972) proposed a slightly different model from the MDS-
choice models discussed above. He proposed the confusion-choice model which at-
tempts to model the recognition process with a fairly complicated perceptual process
incorporating concepts from signal detection theory. His model is written as

P (Rj | Si) =
m∑
k=1

eik
bj (rjk)∑n
l=1 bl (rlk)

, (36)

where bj is the bias probability, m = 2n, rjk is the value of rj for confusion state sk,
and bj is a function of rjk such that

bj (rjk) =

{
bj, when rjk = 1,
0, when rjk = 0.

Moreover, rj and sk are defined as follows:
First, a binary-valued mediating variable, rj , which carries the information as to

whether Rj is or is not acceptable, is defined as,

rj =

{
1, for Rj is acceptable
0, for Rj is not acceptable.

Second, a confusion state is defined as the n-tuple,

sk =< r1k, · · · , rjk, · · · , rnk > .

Moreover, eik is called the equivocation probability

eik = P (sk =< r1k · · · rjk · · · rnk >| Si) =
n∏

j=1

aij(rjk), (37)

where

aij(rjk) =

{
aij, when rjk = 1,

1 − aij, when rjk = 0.

Here, aij is called the acceptance probability,

aij = P (Rj acceptable | Si) = P (qij ≤ t′j) =
∫ t′j−uij

−∞
ϕ(z) dz, (38)

where ϕ(•) is the normal density function, qij = uij + εj , uij is the L-dimensional

Euclidean distance between Si and Rj , i.e., uij =
{∑L

l=1 (xil − xjl)
2
}1/2

, and εj is the
channel noise, N(0, 1).

To sum up, it is evident that Nakatani’s confusion-choice model is an AMDS model



146 N. Chino

in the narrower sense, because the distance between each stimulus Si and its response
Ri is represented by a common point in a metric space. Shepard’s MDS-choice model
and Getty et al.’s weighted Euclidean distance model are also considered as the AMDS
models in the narrower sense among several MDS-choice models.

In contrast with the descriptive AMDS models in the narrower sense, some re-
searchers proposed inferential AMDS models in the 1980’s, as will be discussed below:
Nosofsky (1986) proposed a unified quantitative approach to modeling subject’s iden-
tification and categorization of multidimensional perceptual stimuli. He examined
a traditional similarity choice model with the Minkowski’s r-metric for the former
and a new categorization model which generalized the context theory of classification
developed by Medin and Schaffer (1978) for the latter.

It is interesting to notice here that, on the one hand, the count data obtained by
an identification experiment are summarized in an N ×N confusion matrix C, where
cij in each cell is the frequency with which stimulus i was identified as stimulus j.
On the other hand, in a categorization experiment the N stimuli are classified into
m < N groups, each group assigned a distinct response.

Moreover, in this case the count data are summarized in an N×m confusion matrix,
where cij is the frequency with which stimulus i was classified in category j. Although
the new categorization model is interesting in that it takes the INDSCAL approach
(Carroll & Chang, 1970) in which selective attention is modeled by differential weight-
ing of the component dimensions in the psychological space (Nosofsky, 1986, p.41),
we will not consider it as an AMDS model in the narrower sense because the data
matrix obtained by the categorization experiment does not satisfy the conditions, 1
and 4, of AMDS. The reason is that in Nosofsky’s unified approach, he assumes the
two kinds of confusion matrices.

As the function ηij in Eq. (34) of the similarity choice model, he considers both
the exponential decay function and the Gaussian function. He uses an ML criterion
to estimate parameters of both models. The MDS-choice model yielded its best fits
to the identification data by assuming a Gaussian function and a Euclidean metric.
However, his method seems to be insufficient as an inferential method, because he
neither utilize information criteria nor perform statistical tests in order to compare
several models in terms of their goodness of fit (GIF).

In contrast, Takane and Shibayama (1986, 1992) compared various models inten-
sively through the AIC statistic (Akaike, 1974) by developing a standard ML estima-
tion procedure. The likelihood of the total set of observations is stated in the same
way for all the models, i.e., L =

∏
i,j p

fij
ij , where pij is the conditional probability

specified by each of the models, assuming the multinomial design.
The data used in Takane and Shibayama (1986) are Keren and Baggen’s (1981)

recognition experiment data. Models compared in their analysis are the null model
(the saturated model in the context of the log-linear model) (e.g., Bishop et al.,
1975; Birch, 1963), the unrestricted similarity-choice model (i.e., the similarity choice
model), the Euclidean distance-choice model (i.e., a version of the MDS choice model),
and the unique feature-choice model (a general version of Keren-Baggen’s (1981)
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model). Here, the Keren-Baggen’s model is a feature analytic model for recogni-
tion of alphanumeric characters based on Tversky’s (1977) contrast model (Keren &
Baggen, 1981). In any case, it is apparent that the Euclidean distance-choice model
is the only inferential AMDS model in the narrower sense among the several models
discussed in Takane and Shibayama (1986). Here, it should be noticed that only the
Euclidean distance model among them parameterizes the distance assumed in this
model by coordinates of stimuli. Takane and Shibayama (1992) conducted a more
extensive examination of these models and the related models using four data sets
including Keren and Baggen’s (1981) data.

Nosofsky (1991) proposed a bias-supplemented MDS model

pij = F [u ri + v cj − w dij ], (39)

where u, v, and w are positive constants. He assume that the distance in the multi-
dimensional space is computed using a city-block metric.

De Rooij and Heiser (2003, 2005) proposed models called distance-association mod-
els for the analysis of square contingency tables, each of which might be said to be a
hybrid of the log-linear model and a distance model which is closely related to MDS.
In the one-mode distance association model,

ln[E(fij)] = λ+ λRi + λCj −
∑
m

(xim − xjm)2, (40)

where fij is the observed count in the (i, j) cell of the a square contingency table, and
E(fij) is the expected cell value corresponding to fij . De Rooij and Heiser (2003)
denote E(fij) by Fij . They point out that it is a reduced rank version of the quasi-
symmetry model. Here, at a glance, Eq. (40) is similar to Shepard’s (Shepard, 1958a)
Gaussian model (sometimes called MDS-choice model (e.g., Nosofsky, 1985a), or the
Euclidean distance-choice model (Takane & Shibayama, 1986), but the second right-
hand term is slightly different in that λRi in Eq. (40) includes no distances.

In contrast, the two-mode distance-association model (De Rooij & Heiser, 2005) is
no longer classified as the AMDS in the narrower sense, because it assumes two sets of
coordinate matrix. As an inferential method, they apply the Pearson χ2-test as well
as the likelihood ratio (abbreviated hereafter as LR) χ2-test (e.g., Bishop et al., 1975)
in the former paper. In the latter, they utilize the %AAF (Goodman, 1971) instead
of the G2, considering the fact that the traditional chi-squared distributed statistics
tend to dismiss all models except the saturated model as the sample size increases
indefinitely.

The AMDS models in the narrower sense also include those in the narrowest sense
which were reviewed in the preceding section. Although these models are diverse
in character, there seems to exist at least one criterion for checking various features
of AMDS models. This is the property of quasi-symmetry, which was proposed by
Caussinus (1965) in the context of the square contingency table. As for the models
for the count data, especially confusion data matrices as a typical example of such
data discussed in this section, it has been pointed out (e.g., Smith, 1982; Takane &



148 N. Chino

Shibayama, 1986; Townsend & Landon, 1982) that the similarity choice model has
this property. Of course, the distance-association models proposed by De Rooij and
Heiser (2003, 2005) also have this property, because they associate some symmetric
metric function with the interaction term of the log-linear model.

As for the models assuming the ordinal level or higher in the preceding section,
we can apply this criterion in checking these models if the data are obtained by a
rating scale judgments as in ASYMMAXSCAL. For, in such a case, no matter what
the scale level may be, we can rearrange the original Type A design data into the
Type B design data, i.e., a special N × N ×M contingency table, where M is the
number of rating categories in the rating scale, and check whether the quasi-symmetry
hypothesis holds or not. Moreover, many of the AMDS models in the narrowest sense
have this property.

For example, Chino and Saburi (2009) consider several extant AMDS models as
the quasi-symmetry-like AMDS models. These are Saito’s (1991) model, the distance-
association model, the distance-density model, the Saito and Takeda’s (1990) model,
the slide-vector model, the W-B model, and the O-I model. The reason for label-
ing ’quasi-symmetry-like’ models is that many of these models are not necessarily
designed specifically to analyze the count data. A crucial problem may be whether
the quasi-symmetry property is a universal property which holds for any asymmetric
phenomena. We shall discuss this problem in more detail in the discussion section.

4. Discussion

In this section, we shall briefly introduce problems that are presently unsolved in
AMDS to facilitate its further developments of AMDS in the near future.

Problem 1 (Tests of Symmetry, Quasi-Symmetry, and Marginal Homogeneity)
As pointed out in the last paragraph of the previous section, it may be necessary

and appropriate to check at least whether the data to be analyzed by AMDS has the
quasi-symmetry property possibly before some AMDS model is applied to the data.
On the one hand, for the count data discussed in the previous section, we can di-
rectly test the quasi-symmetry hypothesis by Caussinus (1965), for example, as De
Rooij and Heiser (2003) did. On the other hand, we can apply the special conditional
quasi-symmetry hypothesis (e.g., Bishop et al., 1975) to the Type B data discussed
in the preceding section, if the data are obtained on a rating scale (Saburi & Chino,
2008). The reason for checking this property before any AMDS is applied is that it is
logically invalid to apply any AMDS with the quasi-symmetry property to the data
which have no such property.

In connection with the above method for checking the quasi-symmetry hypothesis,
Saburi and Chino (2008) proposed two possibilities, i.e., a symmetry test prior to
fitting the AMDS model, and some symmetry tests in the scaling step. Alternatively,
Chino and Saburi (2006) have suggested that the conditional quasi-symmetry hypoth-
esis plays a fundamental role in AMDS, and have proposed some sequential tests for
the symmetry and related hypotheses.
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Recently, Chino and Saburi have attempted to prove the following conjecture on the
independence of the three hypotheses, i.e., the quasi-symmetry hypothesis for testing
HQS

0 : θ ∈ ωQS against HQS
1 : θ ∈ Ω − ωQS (Caussinus, 1965), a special symmetry

hypothesis for testing HS
0 : θ ∈ ωS against HS∗

1 : θ ∈ ωQS − ωS, and a marginal ho-
mogeneity hypothesis for testing HMH0

0 : θ ∈ ωMH0 against HMH∗∗
0

1 : θ ∈ ωS − ωMH0 .
Here, the parameter spaces, Ω, ωQS , ωS , and ωMH0 are defined below in Eqs. (41)
through (44). It should be noticed that there exists the relation of inclusion, i.e.,
Ω ⊃ ωQS ⊃ ωs ⊃ ωMH0 , in these spaces:

Conjecture 1 The three LR statistics, G2
QS to test HQS

0 against HQS
1 , G2

S∗ to test

HS
0 against HS∗

1 , and G2
MH∗∗

0
to test HMH0

0 against HMH∗∗
0

1 , are mutually independent

stochastically, if the three hypotheses are tested seriatim and if the HQS
0 is accepted

first and the HS
0 is accepted second.

Here, parameter spaces pertaining to the above three hypotheses, using the log-linear
model (Birch, 1963), are as follows:

First, the total parameter space for θ = (θ(12)
ij , θ

(1)
i , θ

(2)
j , θ(0)) corresponding to an

N ×N cross classification table is

Ω =
{
(θ(12)
ij , θ

(1)
i , θ

(2)
j , θ(0)),

−∞ < θ
(12)
ij , θ

(1)
i , θ

(2)
j , θ(0) <∞ i, j = 1, 2, · · · , N

}
. (41)

Second, the parameter space related to the quasi-symmetry hypothesis is

ωQS =
{
(θ(12)
ij , θ

(1)
i , θ

(2)
j , θ(0)), −∞ < θ

(12)
ij = θ

(12)
ji <∞,

−∞ < θ
(1)
i , θ

(2)
j , θ(0) <∞, i, j = 1, 2, · · · , N

}
. (42)

Third, the parameter space pertaining to the symmetry hypothesis is

ωS =
{
(θ(12)
ij , θ

(1)
i , θ

(2)
j , θ(0)), −∞ < θ

(12)
ij = θ

(12)
ji <∞,

−∞ < θ
(1)
i = θ

(2)
i <∞, −∞ < θ(0) <∞, i, j = 1, 2, · · · , N

}
. (43)

Fourth, the parameter space pertaining to the marginal homogeneity hypothesis in
terms of the log-linear model (Andersen, 1980, pp.208–209) is

ωMH0 =
{
(θ(12)
ij , θ

(1)
i , θ

(2)
j , θ(0)), θ

(12)
ij = 0, −∞ < θ

(1)
i = θ

(2)
i <∞,

−∞ < θ(0) <∞, i, j = 1, 2, · · · , N
}
. (44)

However, this conjecture has not been proven yet (Chino & Saburi, 2009; 2010).
The most difficult problem is whether the LR-statistic for testing the quasi-symmetry
hypothesis, G2

QS , is an ancillary statistic (e.g., Lehmann, 1983) regarding its nuisance
parameters. If G2

QS is an ancillary statistic, we can prove the above conjecture using
the theorems by Basu (1955), Lehmann (1983), and Hogg and Craig (1956). Then,
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we can perform a sequential test for testing these three hypothesis, and can control
the type 1 error completely.

Problem 2 (Multiple-Judgment Sampling)
Computation of the likelihood of the data is essential in constructing any inferen-

tial statistical method. For example, ASYMMAXSCAL assumes that each subject
judges only one pair of objects, which is called the single-judgment condition or the
single-judgment sampling. Computation of the likelihood as a product of likelihoods
of observations is justified in such a case.

By contrast, if each subject judges all pairs of objects, it is called the multiple-
judgment condition or the multiple-judgment sampling (e.g., Bock & Jones, 1968). In
this case, statistical dependencies among these multiple judgments are inevitable. In
practice, however, it is sometimes convenient to use multiple-judgment sampling. For
example, it is usual in the sociometric test to ask members of a classroom to rate all
the members with a rating scale. Table 1 in the introductory section shows one such
set of data.

Although Bock and Jones (1968), for example, discuss the cases in which this re-
quirement is relaxed somewhat in the treatment of paired comparisons, the simplest
way to cope with the violation of independence of the data in the multiple-judgment
condition may be to assume some appropriate statistical distribution for such data.
Promising candidates for it may be the multivariate (Bernoulli) multinomial distri-
bution (Wishart, 1949) and some version of multivariate Poisson distribution (e.g.,
Johnson et al., 1997, Krummenauer, 1998).

Problem 3 (Beyesian Inferences)
As mentioned in the preceding section, various Bayesian inferential MDS methods

have already been developed since Oh and Raftery (2001). However, as far as we
know, there had been no such method for AMDS until recently. Okada (2011) has
proposed such a method. Bayesian AMDS methods might be expected to overcome
some shortfalls of ML methods (e.g., Oh & Raftery, 2001; Press, 1989). A shortfall
of ML MDS methods, which was pointed out by Cox (1982), is that the asymptotic
theory on which ML relies may not apply in high dimensions because the number of
parameters to be optimized typically grows. A well-known shortfall of ML estimation
in a general setting is the so-called Neyman-Scott problem (i.e., Neyman & Scott,
1948), in which the small-sample bias of some ML estimator persists as sample size
increases in the case of a non-identical parent distribution.

However, the Bayesian inference cannot seem to be omnipotent. For example, as
a reason for the schism within the field of statistics over the Bayesian position, Price
states, “Some statisticians feel that the evidence against the frequentist approach to
statistical inference and decision making is not yet sufficiently cogent to warrant dis-
carding a large collection of procedures that by and large have worked pretty well
(Price, 1989, p.48)”. Bernardo states as follows in answering a question about the
axioms of probability by Irony and Singpurwalla (Irony & Singpurwalla, 1996, p.161):
“These are proven existence results; they imply that the common sense ‘a prior does
not exist’ is a mathematical fallacy: for mathematical consistency one must be a
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Bayesian. However, these are only existence results; they leave open the question of
specifying a particular prior in each problem”.

Problem 4 (Multiple Comparisons in Quasi-Symmetry)
Although the importance of the test for quasi-symmetry in the context of AMDS

has already been pointed out by some researchers as discussed in the preceding sec-
tion, the multiple comparisons for the hypotheses of quasi-symmetry have rarely been
done in the context of AMDS, although several statistical theories on this problem
have already been developed (e.g., Hirotsu, 1983; Kastenbaum, 1960). For example,
the row-wise (or column-wise) multiple comparison procedure proposed by Hirotsu
(1983) enables us to examine in which pairs of rows (or columns) the quasi-symmetry
is detected. As is well known, the quasi-symmetry hypothesis is usually defined as
HQS

0 : θ(12)
ij = θ

(12)
ji for all i and j, where θ(12)

ij is the interaction term of the log-linear
model. In contrast, Hirotsu utilizes an alternative definition of quasi-symmetry, i.e.,
HQS

0 : pijpjkpki = pjipikpkj for the triplet i, j, k being all different as well as any pair
of the triplet being equal, where pij is the population probability corresponding to the
observed frequency fij . If HQS

0 is rejected, one may consider, say, the hypothesis on
its row-wise partition, hKij

0 : Dt
ij q = 0, where Dt

ij is an (n−2)×N2 matrix with dtijh,
h = 1, · · · , N ; h �= i, j as its N −2 rows, dijh besing an N2 dimensional vector defined
for a triplet such that the N(i−1)+jth, the N(j−1)+hth, the N(h−1)+ith elements
are 1, the N(i− 1) + hth, the N(j− 1) + ith, and the N(h− 1) + jth elements are -1,
and all the other elements 0 if 1 ≤ i < j < h ≤ N and similary for other permutation.
Moreover, q is an N2-dimensional vector with ln pij as the N(i − 1) + jth element.
Such comparisons might uncover interesting features contained in the contingency
tables peculiar to AMDS.

Problem 5 (Positive Semidefinite Programming)
As Kumagai (2010) points out, recently there has been increasing attention to the

problems and applications of the semidefinite programming (e.g., Alfakih et al., 1999;
Laurent, 2001; Weinberger & Saul, 2004; So & Ye, 2007). Kumagai (2010) proposed
to solve the classical MDS problem by Torgerson with asymmetric relational data in
a different fashion, utilizing the semidefinite programming. His method cannot be
classified into AMDS in the narrowest sense, because it does not satisfy condition 4.
However, his idea might be extended further to solve various AMDS problems from
the view point of semidefinite programming, because (positive) semidefiniteness plays
an essential role not only in MDS but also in AMDS, as the Chino and Shiraiwa’s
theorem points out. Solving HFM assuming a positive semidefinite Hermitian matrix
may be an easy problem to be solved in the near future.

Problem 6 (Longitudinal Asymmetric Relational Data)
In the traditional psychometric approach to a special two-mode, three-way matrix

which is composed of one-mode, two-way square asymmetric matrices, the second
mode usually represents individual. However, we frequently encounter a three-way
matrix whose second mode denotes time. Longitudinal sociometric matrices and lon-
gitudinal trade data are typical examples. An ambitious approach to such three-way
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data may be to construct some vector field model based on dynamical system theory
in mathematics.

On the one hand, Tobler (1976–1977) and Yadohisa and Niki (1999) estimate such a
vector field, given a single asymmetric data matrix among objects. On the other hand,
a DYNAmical System SCALing method (abbreviated as DYNASCAL) proposed by
Chino and Nakagawa (1990), estimates the vector field at each point in time (which is
not restricted to the gradient field of the scalar potentials), given a set of longitudinal
asymmetric relational data matrices, such as longitudinal attraction data which were
gathered by Newcomb (1961). In this method, the configuration of members of a
dormitory at each time is estimated from each of the longitudinal asymmetric data
matrices via MULTISCALE proposed by Ramsay (1982).

DYNASCAL estimates further some important features of the vector field at each
time, utilizing the qualitative theories of singularities as well as those of bifurcations
in interpreting the estimated vector fields. Figure 3 shows one of the estimated vector
fields, some estimated trajectories peculiar to the vector field, and some estimated
attractors (in particular, singularities and a limit cycle) of the field for the Newcomb
data via DYNASCAL. These features of the vector field provide us not only with the
configuration of members in a group at a specific point in time but also with changes
in the local as well as the global group structure of members over time.

A limitation of these methods seems to be their assumption about the state space.
For, all of these assume that it is Euclidean. By contrast, the Chino and Shiraiwa
theorem suggests that the state space is a finite-dimensional (complex) Hilbert space.
In fact, Chino (2005) proposed a complex difference equation model of interpersonal
interaction. But, it is a very restrictive model, as Chino pointed out. For example, it
assumes that members will not move in his or her psychological space if there exists no
skewness of sentiment between any two members. A more promising model should be
constructed based on a deeper insight into the principle of interpersonal interactions
and on ample empirical facts regarding interpersonal attraction.

Problem 7 (Indefinite Metric Space)
Indefinite metric space models for asymmetric MDS can generally be defined as

models whose Hermitian matrix constructed directly or estimated from a one-mode,
two-way square asymmetric matrix is indefinite (e.g., Chino & Shiraiwa, 1993). Spaces
with such a metric is not so familiar among social and behavioral scientists, but they
are well known in physics. For example, Minkowski space in a special relativity theory
in physics is known to possess a typical example of indefinite metric structure (e.g.,
Arfken & Weber, 1995). In this space, the space-time interval, ds2, is defined as

ds2 = dx2
0 − dx2

1 − dx2
2 − dx2

3,

where x0 = ct and c is the velocity of light.
Berlin and Kac (1952) proposed a mathematical model of a ferromagnet, in which

it is assumed that there is a spin at each site of a regular lattice of N sites. Imme-
diately before discussing some models for the interaction energy between neighboring
spins, they examined the eigenvalue-eigenvector problem of the real circulant matrix
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Figure 3: Estimated vector field at Week 0 of Newcomb’s longitudinal data (Reproduced from
Figure 5 of Chino and Nakagawa (1990)). In this figure, numbers indicate the locations
of members in the dormitory.

(or cyclic matrix),

M c =

⎛
⎜⎜⎜⎜⎜⎝

c1 c2 c3 · · · cN−1 cN
cN c1 c2 · · · cN−2 cN−1

cN−1 cN c1 · · · cN−3 cN−2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
c2 c3 c4 · · · cN c1

⎞
⎟⎟⎟⎟⎟⎠ . (45)

This matrix is asymmetric in general, but can be symmetric by imposing necessary
conditions on the coefficients. They wrote down all the eigenvalues of M c and the
corresponding eigenvectors in the appendix.

Chino (2001) examined the eigenvalue-eigenvector problem of the Hermitian ma-
trix constructed from a special 4 × 4 circulant matrix whose elements are composed
of c1 = 1, c2 = 2, c3 = 3, and c4 = 4 using HFM, and showed that it has the in-
definite metric structure. Kosugi (2004) considered the possible 16 patterns of the
triadic asymmetric relationships among members of a group (Harary, 1968) from the
viewpoint of the above theories by examining the eigenvalue-eigenvector structures of
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the Hermitian matrices constructed from the hypothetical 16 asymmetric relational
matrices among three members of a group using HFM. In examining these structures,
Kosugi assumes that the 3 × 3 sociomatrix has three values in which 1 denotes pos-
itive sentiment, −1 denotes negative sentiment, and 0 indicates no such relations.
Moreover, he assumes that all of the sentiments corresponding to self-similarities are
positive, i.e., 1. It should be noticed that Kosugi’s 16 patterns are special cases of the
basic 16 patterns shown in Harary (1968), because Harary’s patterns assume neither
the self-similarity nor the negative sentiment. In any case, Kosugi showed that 11
patterns out of 16 basic patterns have indefinite metric structures.

In contrast, Saito and Yadohisa (2005) examined circle patterns of the skew-
symmetric matrix constructed from a general circulant matrix M c using SVD. It
should be noticed that such circle patterns of the skew-symmetric matrix have a
symplectic structure but have no Euclidean metric structures, as pointed out in the
introductory section. It should also be noticed that the circulant matrix M c does
not necessarily have an indefinite metric structure. That is, if it is symmetric, then it
might have a Euclidean structure or an indefinite metric structure, depending on the
eigenvalue structure of the corresponding Hermitian matrix.

An interesting feature related to the asymmetric circulant matrix is the so-called
circular hierarchy. For example, circular triads in dominance matrices, which is a
special case of the circular hierarchy, are the cases where objects i dominates j, ob-
ject j dominates k, but object k dominates i. Although there has been extensive
literature on circular hierarchy in psychology, sociology, ethology, physics, and so
on (e.g., Appleby, 1983; Bass et al., 1972; Bodenreider, 2001; Chadwick-Furman &
Rinkevich, 1994; De Sarbo & De Soete, 1984; De Vries, 1995; Digby & Kempton,
1987; Harshman, 1981; Kendall, 1962; Kendall & Smith, 1940; Masure & Allee, 1934;
Saito, 2002; Shepard, 1964), it has frequently been considered as being unnatural and
counterintuitive (e.g., Harshman, 1981).

A more general matrix than the circulant matrix, which includes the circulant
matrix as a special case is the Toeplitz matrix (e.g., Horn & Johnson, 1985):

M t =

⎛
⎜⎜⎜⎜⎜⎝

t0 t1 t2 · · · tN−1 tN
t−1 t0 t1 · · · tN−2 tN−1

t−2 t−1 t0 t1 · · · tN−2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
t−N t−N+1 t−N+2 · · · t−1 t0

⎞
⎟⎟⎟⎟⎟⎠ . (46)

where tij = tj−i for some given sequence t−N, t−N+1, · · · , t−1, t0, t1, t2, · · · , tN−1, tN ∈
C, and C is the field of complex number. The real version of this matrix seems to play
a more important role in the analysis of circular hierarchy as well as indefinite metric
space. For example, let us suppose that N = 3, t0 = t1 = t2 = 1, and t−1 = t−2 = −1.
The triadic relation with such a feature is the 9th pattern shown in Table 3.2 of Ko-
sugi (2004). The eigenvalues of the Hermitian matrix constructed from this matrix
are 1+

√
3, 1, and 1−√

3, which means that the above triadic relation among artificial
members has an indefinite metric structure.
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It will be necessary and desirable to gather empirical evidence further on circular
hierarchy as well as indefinite metric structure, to examine the genetic background
for such structures, and to establish substantive theories on these structures. For
example, experiments conducted by Chadwick-Furman and Rinkevich (1994) with a
complex allorecognition system in a reef-building coral, in which circular hierarchies
of overgrowth interactions were exhibited in some of the colonies of a coral reef, are
interesting in that they aimed at formulating a genetic basis for their allorecognition
system.

Problem 8 (One-Mode, Three-Way Asymmetric Relations)
Recently, several MDS as well as AMDS methods which assume some triadic dis-

tances have been developed, given a one-mode, three-way square data matrix. Meth-
ods for analyzing this type of triadic distance data go back to Hayashi (1972). Repre-
sentative methods in this category are Cox et al. (1991), Daws (1996), De Rooij and
Gower (2003), Gower and De Rooij (2003), Hayashi (1972, 1989), Heiser and Ben-
nani (1997), Joly and Le Calvé (1995), Nakayama (2005), and Nakayama and Okada
(2011). These are descriptive MDS methods which assume certain symmetric, triadic
distance models. In contrast, De Rooij (2002) and De Rooij and Heiser (2000) pro-
posed an inferential AMDS method which assumes some asymmetric, triadic distance
models.

These MDS as well as AMDS methods assume some functions of dyadic distances
except for Hayashi’s (Hayashi, 1972) area model. Stated another way, neither of these
models except Hayashi’s deals with the triadic models which include triadic interac-
tion (e.g., De Rooij and Gower, 2003). However, there exist some triadic relational
data in which it is inappropriate to reduce holistic triadic relationships into diadic
relationships. Typical examples can be found in some balance theories (e.g., Heider,
1946; Newcomb, 1953) and also in the cognitive dissonance theory (Festinger, 1957)
in social psychology.

As already discussed in Problem 7, Kosugi (2004) examined the possible 16 pat-
terns of triadic asymmetric relationships from the viewpoint of the above theories in
social psychology by checking the eigenvalue-eigenvector structures of the Hermitian
matrices. That is, he considers these structures from the balance theoretic viewpoint.

A possible method for handling the triadic interaction discussed above is to utilize
a special skew-symmetric tensor called the exterior form which is usually denoted as
k-form (or an exterior form of degree k). Here, a k-form is a function of k vectors
which is k-linear and antisymmetric (e.g., Arnold, 1978). Let us suppose that we
embed objects in an oriented p-dimensional Euclidean space Rp. Then, the three-
dimensional oriented volume of the projection of the parallelopiped with edges ξ1, ξ2,
ξ3 ∈ Rp onto R3 is a 3-form on Rp. We may fit the square of this volume as a measure
of the triadic interaction to a one-mode, three-way square symmetric relational data.
On the other hand, for a one-mode, three-way square asymmetric relational data, one
way to handle the skew-symmetric components of the data may be to use the 3-form
itself. In this case, it might be better to make some origin shift in defining the square
of this volume to, say, the centroid of the coordinates of objects.
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Of course, the idea of utilizing exterior forms is not new in the literature of MDS
or, AMDS. For example, Chino’s ASYMSCAL, GIPSCAL, and the Gower diagram fit
area quantities to the skew-symmetric part of any one-mode, two-way square asym-
metric matrix, as has already been discussed in section 2. These area quantities are
all 2-forms. In contrast, Hayashi’s area model for triadic data utilizes a special 3-
form, which is associated with the area of simplex composed of the three vertices
corresponding to three objects for handling triadic data. The idea of utilizing exterior
forms can naturally be extended to MDS as well as AMDS for n-tuples (e.g., Cox et
al., 1991).

However, caution should be exercised when utilizing tensors in general for fitting
any statistical model to data. As has already been mentioned elsewhere (e.g., Silva
& Lim, 2008; Stegeman & Comon, 2010), the following best rank-r approximation
problem, Approx(A, r), has no solution in general for r = 2, · · · ,min (d1, · · · , dk) and
k ≥ 3, where an order-k tensor A is an element of a tensor product of k real vector
space V1 ⊗ V2 ⊗ · · · ⊗ Vk, as defined in any standard algebra textbook:

Approx(A, r): Given an order-k tensor A ∈ Rd1×···×dk , determine vectors xi ∈
Rd1 ,yi ∈ Rd2 , · · · ,zi ∈ Rdk , i = 1, · · · , r, which minimize

‖A − x1 ⊗ y1 ⊗ · · · ⊗ z1 − · · · − xr ⊗ yr ⊗ · · · ⊗ zr‖, (47)

where ‖ • ‖ denotes some choice of norm on Rd1×···×dk .

Stated another way, the best low-rank approximation problem for tensor is ill-posed
for all orders (higher than 2), all norms, and many ranks, and the set of tensors that
fails to have a best low-rank approximation has positive volume (De Silva & Lim,
2008). These results may be contrasted with the case when k = 2, i.e., the problem
with the Eckart-Young theorem, which was discussed in the introductory section.

As reviewed extensively in Stegeman and Comon (2010), there has already been an
extensive literature on this problem and related topics, and several psychometricians
have partly contributed to them (e.g., Krijnen, Dijkstra, & Stegeman, 2008; Kruskal,
1989; Stegeman, 2006, 2007, 2008; Stegeman & Lathauwer, 2009; Ten Berge & Kiers,
1999; Ten Berge, Kiers, & De Leeuw, 1988; Ten Berge, Sidiropoulos, & Rocci, 2004).

It might be possible to overcome possible difficulties in introducing some appro-
priate tensors in the analysis of the triadic interaction problem discussed above by
utilizing future methods for overcoming the ill-posedness of the lower-rank approxi-
mation problem. This is because the approach to this problem is still an active area
of research, which has recently received increasing attention in statistics as well as in
mathematics.
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